Scope Time Project 2022 Oct ~ 1. Locally and globally consistent online implicit mapping Research Cont. Fusion of power of implicit representations for local accuracy Leveraging global consistency of GPO • Multi-modal mapping ٠ ≻ C++ ➢ Bash ➢ Git ➢ ROS > Python > Pytorch ➤ Bash ➢ Git 2. Online lightweight mesh generation framework for user guidance in space 2022 May. Research exploration ~ 2022 Oct. & Dense volumetric mapping under unreliable communication • Engineering Triangle mesh processing pipeline for offline map generation Point cloud colorization ≻ C++ Bash > Git > Python > ROS 2021 Nov. ~ 3. LiDAR Localizability Aware Constrained Optimization for Robust Robot Master's Thesis Pose Estimation, Robotics Systems Lab (RSL) ETH Zürich 2022 May. & LiDAR localizability detection Research Design and Deployment of an augmented ICP algorithm • Comparative Evaluation Linear Algebra • ≻ C++ > Git > Bash > ROS > Python 2021 Mar. ~ 4. Perception Engineering Internship, ANYbotics Internship August Design and deployment of a Global localization system. • Design and deployment of a SLAM supervision module. Comparative Evaluation of Odometry Systems • Sensor Calibration ➢ Git ➤ C++ > Docker ≻ ROS > Python ➤ Bash 5. Deep Learned Augmented Robocentric EKF for Visual Inertial Odometry Research 2020 Sept~2021 Learning Based Visual Feature Tracking • Jan. Detection of Learning Based Features with Uncertanity • • Learning Based Gravity Vector Estimation with Uncertanity Extended Kalman Filter(EKF) Augmentation ≻ C++ > Pytorch ► ROS > Python 2019~2021 6. Design and Deployment of New Generation Super Mega Bots, ETHz ASL Research Assistant March. Lead Mechanical Designer Rapid Prototyping and Product Design • Microsoft Office Solidworks Siemens NX \geq 7. ARbotics: Soft Real-Time Interactive Simulation and Visualization 2020 Feb. **Course Project** Framework in AR for Robotic Systems Based on ROS ~July.

Project Portfolio - Turcan Tuna

Sensor Simulation for AR systems

- Fundamentals of Visual SystemInter-Platform connections
- - ≻ C# Microsoft Hololens
 - Unity 3D Docker

2020 Feb. ~July.	 8. DEEL VIO: Deep End-to-end Learning Visual Inertial Odometry End-to-end training of RNN and CNNs Deep Neural Network Design Sensor Fusion, Monocular Camera & IMU Python > Tensorflow / Keras 	Course Project
2019	9. Deep Learning Framework for Learning Prediction and Simulation Focused Models	BSc Thesis, Publication
	 Non-Linear System Identification Simulation of Non-Linear Systems Deep Neural Network Design Recurrent Neural Networks, DNNs One Step Ahead Prediction of Time Series 	
	\succ MATLAB \succ C	
2018	10. Emotion Recognition using Temporal Segment Networks with Batch Normalized Inception architecture	Research Assistant
	 Human Emotion Classification Convolutional Neural Networks Statistical Data Feature Extraction 	
	➢ MATLAB ➢ Pytorch	